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Supplemental Material  

 

Variability in the omics 

 

Sources of Technical Variability 

 

Transcriptomics:   The complex nature of microarray experiments, with many 

individual manipulations between biological sampling and data interpretation, make 

technical variability a serious concern. The process of interpretation is especially 

vulnerable to technical variability because of the simultaneous measurement of hundreds 

or thousands of endpoints and these are compounded by the high cost of the technique 

which has often led to the use of suboptimal sample sizes. 

 

Technical variation in transcriptomics measurements can arise from many sources, 

including sampling processes, non-ideal RNA isolation and storage, variations in RNA 

labeling (including lability of probes), imperfect hybridization and subsequent data 

analysis methodologies. Transcriptomics has been the subject of quite extensive 

evaluations of technical variation (reviewed in detail in (de Koning et al. 2007; Fuscoe, et 

al. 2007; Mattes 2008; Thompson and Hackett 2008; Walker and Hughes 2008). Several 

consortia  have recently examined technical variability within laboratories, between 

laboratories and between different expression monitoring platforms (Bammler et al. 

2005; Kuo et al. 2006; Shi et al. 2006; Beyer et al. 2007; Chen et al. 2007; Arikawa et al. 
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2008; Fielden et al. 2008; Kohlmann et al. 2008). These large scale studies have 

demonstrated that microarray analysis can be performed with good intra- and inter-

laboratory reproducibility for genes that have copy numbers of at least 5 to 10-fold above 

their detection limits and this has been confirmed by alternative methods such as 

quantitative real time PCR (Canales et al. 2006).  

 

Several key areas have been identified that can cause technical artefacts.  These include 

study design, inadequate numbers of samples, and methods for sample acquisition, 

preparation, storage, processing and analysis. Once capture of the biological target has 

been achieved it is important that equivalent portions of tissue are dissected because of 

the likelihood of cellular and functional heterogeneity of the tissue and zonation of gene 

expression (Gebhardt 1992; Oinonen and Lindros 1998; Boedigheimer et al. 2008). It is 

important to recognize that batch effect as a source of error is likely and that biological 

samples are processed at random in each batch rather than each batch analyzing 

biological material from a single sampling event. Sample integrity is critical to successful 

analysis. Tissue thawing can lead to a rapid loss of RNA integrity thereby dramatically 

affecting array quality especially if probes are located more than 1000 bp from the 

transcriptional end of the mRNA (Thompson et al. 2007). Standardized protocols and 

external controls for quality control must be established to assure reliability. One aspect 

that can contribute to inter-laboratory studies is the use of external RNA controls (Baker 

et al, 2005). The quality of microarray analysis can be greatly improved by inclusion of 

adequate documentation that capture important aspects of experimental variables such as 
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treatments, sample quality and methods, therefore helping to assess microarray quality 

issues due to protocol variation. 

 

Design of microarrays can introduce technical variation especially if multiple platforms 

are used for analysis. Disagreement in results from different platforms can result from 

probes hybridizing with different efficiencies to non-overlapping target sequences and in 

the case of cDNA probes, this may be compounded by cross hybridization with multigene 

family members. The format of the microarrays can affect variability with commercial 

products having better quality control and reproducibility with different sample labeling 

protocols contributing negligible variations in results (Kuo et al., 2006, Patterson et al., 

2006). While different formats give similar results in terms of expression patterns, 

variation in signal intensity and resulting expression values can be obtained between 

different laboratories and microarray formats (Chen et al. 2007). 

 

Perhaps the most important technical variable is in the normalization and statistical 

interpretation of array data. Preliminary steps should be employed  to eliminate outliers 

(excessive chip-to-chip variation) that may be as high as 5-10% (Boedigheimer et al. 

2008; Hershey et al. 2008). Normalization is essential to eliminate the effects of variable 

cDNA labeling but different normalization protocols and statistical analysis algorithms 

generate different lists of differentially expressed genes. For chip-based arrays, 

normalization by robust multichip average (RMA) and gene-chip RMA, are common 

approaches and may have advantages over traditional normalization with housekeeping 

genes (Irizarry et al. 2003; Hershey et al. 2008), especially since in the present context 
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toxicants are being studied and by definition these will adversely affect cellular 

architecture and basal metabolic processes.  While some groups advocate simple cut off 

rules based on fold-change versus controls and significance tests (Shi et al. 2006), this 

can lead to high false positive errors if a no-treatment effect is not considered (Chen et al. 

2007).  Reproducibility can be maximized if analyses are based on biological functions 

such as defined by gene ontology terms and toxicological function (Bammler et al. 2005; 

Fielden et al. 2008). Analysis of species of ecological interest is complicated by lack of 

genome sequence and poor annotation. 

 

Proteomics:  Global analyses of the proteome are now becoming possible with new 

technological innovations, however, sample preparation and manipulations can be 

exceedingly complex and thus variability is of considerable concern.  Recently there have 

been a few attempts to ascertain intra-individual variability but these have not, so far, 

been extended to inter-laboratory comparisons, possibly due to the lack of established 

standards for representing proteomic data.  

Inter-experimental reproducibility is not good using 2-dimensional polyacrylamide gel 

electrophoresis approaches, however, an excellent differential display technique (DIGE) 

allows multiple samples to be compared on the same gel and is a powerful tool in 

biomarker discovery for laboratory exposure studies which is quantifiable. Potentially 

useful biomarker candidates must be carefully selected from proteins that are not subject 

to sexual, nutritional and naturally high variations in expression, moreover, they must be 

sufficiently abundant and resolvable from other proteins for reliable quantitation.  Recent 

studies indicate that a sample size of some 7 replicates creates reliable data. There is 
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obviously a pressing need for establishment of standardized selection procedures. Whilst 

proteins of genomically characterized animals can be identified relatively easily by mass 

spectrometry of excised proteins using MALDI-TOF instruments, protein identification 

in non-characterized organisms requires de novo sequencing methods, precluding routine 

use until sufficiently comprehensive databases have been assembled.   

 

Increasingly, proteomic techniques use liquid-chromatography (LC) separations coupled 

with electrospray ionization (ESI) MS and tandem mass spectrometry (MS/MS) for the 

characterization of the separated peptides or proteins.  Sample preparation procedures are 

potentially much less variable and theoretically they should be able to analyze a larger 

proportion of the proteome, however, extensive sequence databases of the study organism 

are required and methods for accurate inter-individual quantitation are lacking and still 

under development.   

 

Metabolomics.  The ultimate expression of an organisms’ phenotype is the profile of 

metabolites in its cells and bodily fluids.  Often their existence is transient as many are 

rapidly biotransformed therefore sampling, sample preservation and extraction techniques 

are critical for high reproducibility.   Standardisation of methods is therefore essential and 

progress is being made on this front. 

 

Keun et al. (2002) assessed the analytical reproducibility of an NMR metabolomics 

experiment by analysing two identical sets of rat urine samples from an acute toxicity 

study. The analyses were performed at two sites and principal components analyses 
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(PCA) revealed extremely similar descriptions of the metabolic responses to hydrazine. 

In one study (Bertram et al. 2007), identical sets of human urine before and after dietary 

intervention were measured using 250, 400, 500 and 800 MHz NMR spectrometers. 

When analysed by partial least squares discriminant analysis (PLS-DA), the loadings 

were found to comprise of the same spectral regions implying that the same metabolites 

were discriminating pre- and post-dietary intervention, independent of magnetic field 

strength. Most recently, an intercomparison exercise involving seven laboratories 

evaluated the accuracy, precision and efficacy of 1H NMR metabolomics for 

environmental research (Viant et al. 2009). 

 

 The study comprised the analysis of both synthetic metabolite mixtures as well as 

European flounder (Platichthys flesus) liver extracts from clean and contaminated sites. 

For both sample types, PCA revealed highly similar scores plots across all laboratories. 

Furthermore, the same metabolic biomarkers that discriminated fish from clean and 

contaminated sites were discovered by all the laboratories. Taken together, these studies 

clearly demonstrate that NMR-based metabolomics can generate data that are sufficiently 

reproducible between laboratories to support its use in regulatory studies. No such 

intercomparison exercises have yet to be reported for mass spectrometry based 

metabolomics studies. 

 

Sources of biological variability 
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Biological variation can be conveniently sub-categorised into variation within the control 

group or population (i.e. intra-class variation that is often unrelated to the toxic stressor 

being studied) and variation between the control and exposed groups (i.e. inter-class 

variation). In general, experiments should be designed to minimise both technical and 

intra-class variation, thereby maximising inter-class differences that can be explored 

using data mining techniques. Meaningful results depend on technical variability being 

less than biological variability.  

 

As a prelude to this discussion, two distinct scenarios must be considered. In chemical 

testing (e.g. OECD) a limited number of model organisms are used worldwide for 

controlled laboratory studies. In environmental monitoring, locally relevant sentinel 

species, with little supporting genomics information, are typically used and sampled 

directly from the environment. These two scenarios will be associated with significantly 

different degrees of biological variation. 

 

Variability between individuals within a given population is an essential component of 

population health and sustainability as it encodes for phenotypic flexibility and ability to 

acclimate to changing conditions and is the vehicle of evolution. Environmental stressors 

can impact this and affect the phenotypic variation between individuals. Reduced 

variability is potentially adverse to the sustainability of the population. Little is 

understood about the stressor-induced changes on these parameters in an environmentally 

relevant context. Some examples in the literature indicate that individuals within a 

population may have different degrees of susceptibility to estrogenic exposure, resulting 
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in a large spread in the degree of response at low concentrations of estrogens and a more 

consistent response between individuals at high concentrations (Thorpe et al. 2001; 

Thorpe et al. 2003). The implications of the decreased variability caused by chemical 

exposure for the sustainability of wild fish populations are unknown. Potentially, if such 

an effect was also occurring in the wild, it could impact on the ability of the population to 

cope with changing environmental conditions and compromise its sustainability. It is 

clear that individual variation might be considered as an endpoint in toxicological studies 

when population level effects are being addressed as chemicals may impact on this 

parameter and compromise the ability of populations to survive in environments 

constantly under pressure by changes in natural factors and anthropogenic stressors. 

 

Inter-individual biological variation can be associated with two levels of organisation, 

generally defined as genotypic and phenotypic variation. Genetic variation is inherent in 

individuals within populations and accounts for the phenotypic plasticity allowing 

individuals to acclimate and populations to adapt to changing conditions. Genetic 

variation within a group of organisms is apparent at several levels, including 

polymorphisms, copy-number variants, alternative splicing, post-transcriptional and post-

translational regulation and epigenetic modifications. Furthermore, organisms may vary 

in strain or clonal line. In general, genetic variability will be considerably higher (and less 

well characterised) for environmentally sampled organisms compared to model 

organisms unless out-bred colonies have been maintained. Furthermore the identification 

of closely related species (eg Mytilus spp.) is sometimes difficult for environmentally 

sampled organisms, which can be a major source of error and a confounding issue in the 



 9

interpretation of ecotoxicogenomics data. Phenotypic variation is strongly influenced by 

the environment and its interaction with the unique physiological conditions associated 

with individual organisms. This form of variation can arise from factors such as age, 

stage of life cycle and reproductive cycle, sex, nutritional status and general health. 

Phenotypic variation is also likely to be lower in studies of model organisms under 

laboratory conditions where it is practical to use standardized experimental conditions. 

Many of these factors cannot be controlled for environmentally-sampled animals, but 

recommendations applied to current biological-effects monitoring regarding sampling 

and documentation (by EPA, ICES etc) should be adhered to. The NERC Environmental 

Bioinformatics Centre (NEBC) has recommended those parameters that should be 

recorded and reported for transcriptomic submissions 

(envgen.nox.ac.uk/posters/MIAME_Env.ppt) as has the Environmental Context working 

subgroup of the Metabolomics Standards Initiative for a metabolomics study (Morrison et 

al., 2007). While it might be anticipated that model organisms raised in a controlled 

laboratory exhibit less environment- and capture-induced variation than similar animals 

living in the wild, the situation is far less clear for wild animals housed within the 

laboratory for short periods. Hines et al. (2007) showed that direct sampling of Mytilus 

galloprovincialis, a marine mussel, from the environment resulted in less metabolic 

variation than for animals from the same cohort that were returned to the laboratory in an 

attempt to allow their metabolome to equilibrate in controlled conditions.  

 

Mammalian toxicogenomics studies have provided valuable information on baseline 

fluctuations in gene expression due to study condition and/or endogenous factors.  A 
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consortial effort was recently undertaken by the HESI Genomics Technical Committee to 

examine microarray data from control animals from toxicogenomics studies of rat liver 

and kidney (Boedigheimer et al. 2008).  Gender, organ section, fasting state, and strain 

emerged as study factors that contributed highly to variability in gene expression, 

whereas other factors, such as age, vehicle administration route, sacrifice method, and 

dose frequency were not major contributors to baseline variance.  Genes with high 

variability, identified in the study, include many of interest in toxicology, such as those 

involved in xenobiotic metabolism, androgen and estrogen metabolism, steroid 

biosynthesis, and antigen processing and presentation. Low variance genes were also 

identified, and included those involved in protein metabolism and immune response.  

Such low variance genes may prove valuable as study controls. This collaborative effort 

determined the impacts of key study factors on measured gene expression in a 

toxicogenomics study and illustrated the importance of defining the baseline gene 

expression against which stressor-induced gene expression changes are to be evaluated. 

 

Others have considered expression level variation as a genetic Quantitative Trait that can 

be used to identify loci that regulate gene expression and thus explain the mechanisms 

behind the variation (Williams et al. 2007). While it is possible to establish the 

importance of genetic factors in dictating mRNA expression level, variation between 

independent studies frequently generates conflicting data which have sometimes been 

attributed to a technical failure of array technology from differential hybridization of 

array probes by polymorphic transcripts (Alberts et al. 2007). In the area of proteomics, 

Hu et al. (2005) investigated  variability  in expression of proteins of human 
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cerebrospinal fluid and Zhang et al. (2006) reported variability in protein expression 

between 12 human liver samples. These, and other studies on fish (George et al. pers. 

comm.), identified a very large dynamic range of variation in protein expression.  

  

 

Experimental design and biological variation 

 

Here we highlight recent findings from studies of variability within both the chemical 

risk assessment and environmental monitoring scenarios. Hines et al. (pers. comm.) 

recently conducted an extensive investigation into sources of metabolic variation in 

marine mussels sampled from the environment. An initial analysis of the entire metabolic 

dataset showed large variability but the majority of this could be rationalised in terms of 

season (i.e. month when animal was sampled), sex, species and site effects. This data 

suggests that information about these parameters is necessary for interpretation of inter-

individual biological variation and to potentially reveal pollutant effects.   

 

Similarly, many studies in both fish and rodents have highlighted the strong influence 

that parameters such as sex and stage of the reproductive cycle have on an individual’s 

transcriptome and proteome, not only in the reproductive tissues but also in other 

commonly studied tissues such as the brain and liver. In many cases this can be attributed 

directly to interaction with sex hormone signalling pathways; however, more subtle 

effects can also be due to cross-talk between nuclear transcription factors. Therefore, it is 

essential to consider and document both the sex and the stage of the reproductive cycle in 
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toxicological studies even when assessing chemicals which are not suspected of causing 

endocrine disruption. While differences in the gonad are to be expected, extensive 

sexually dimorphic gene expression is also found in somatic tissues in rodents (Boyle and 

Craft 2000; Waxman and O'Connor 2006; Yang et al. 2006), zebrafish (Robison et al. 

2008; Santos et al. 2008; Sreenivasan et al. 2008) and M. edulis (Brown et al. 2006) and 

is likely to occur across species and in particular in organisms developing as 

gonochoristic males or females. Environmental factors such as temperature and hypoxia 

have also been shown to strongly influence the transcriptomic and proteomic profiles in 

poikilotherms. Indeed the expression of several enzymes and proteins which activate and 

detoxify important chemical toxins, as well as those involved in RNA processing, 

translation initiation, mitochondrial metabolism, proteasomal function, and essential fatty 

acid synthesis in fish show a clear temperature dependence (Gracey et al. 2004). Thus the 

response to chemical exposure may be significantly modulated by the ambient 

temperature and this must be taken in to account in field sampling. The general 

recommendation of European legislative studies of chemical impacts is to standardise the 

sampling season to minimise effects of temperature and the nutritional status and to 

utilise animals (usually males) when they are either sexually immature or gonadally 

quiescent.   

 

Key components that require attention to minimise variability, as discussed above, are 

sampling processes, sample isolation and storage, preparation of samples for analyses, 

numbers of replicates, design of platforms and methods of normalisation. Particularly 

important are study design and statistical analyses. Only with biological replicates is it 
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possible to apply statistical tests. Statistical justification and formula presented by 

Kendziorski et al. (2003) and Peng et al. ( 2003) can be used to calculate the number of 

biological samples and pools needed for an appropriately powered analysis. For omics 

based studies the challenge in power analysis is how to determine the appropriate 

variance since tens of thousands of elements (i.e. genes, proteins or metabolites) are 

measured simultaneously and each one possesses its own variance. One option is to use a 

pooled variance, such as the value estimated from PCA or other error pooling algorithms. 

The second option is to calculate the variance for each element and take the nth percentile 

as the value to use. Usually, detection of small changes for elements with large variances 

is unlikely. By adjusting the variance value and the effect size (i.e. fold change), power 

analysis can be tailored to choose the sample size that fits the purpose and significance of 

an experiment. Power analysis requires a pre-existing data set that resembles the 

proposed project as much as possible in order to derive an accurately estimated variance. 

The perfect data set comes from a pilot study for the proposed project. When that is 

impossible, we recommend matching the biological aspects (e.g. species and tissues) 

before matching the technical aspects (e.g. technologies and platforms), assuming the 

technical variance is smaller than the biological variance.  
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Supplemental Material, Figure 1. 
 
The modular approach for applying the ECVAM principles on test validity 

 
Reproduced from Hartung et al (2004), with permission.  
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Supplemental Material, Table 1:  Key examples of the successful use of toxicogenomics data in ecotoxicology.   
 
A. Prospective Studies 
APPLICATION NATURE OF 

EXPOSURE 
APPROACHES SIGNIFICANCE OF RESULTS REFERENCES 

Chemical Signatures Diet,  
static renewal, 
semi-static 
renewal or  
ip injection 

Microarray Demonstrates chemical class specific gene 
expression, and/or chemical specific 
signatures 

Benninghoff and 
Williams 2008; 
Larkin et al. 2003; 
Hamadeh et al. 
2002; McMillian et 
al 2005; Moens et 
al. 2006; Hook et 
al. 2006; Ellinger-
Ziegelbauer et al. 
2008 

Mixtures Hepatocytes in 
vitro 

Microarray Demonstrates that mixtures show attenuated 
biomarker responses compared to those of the 
chemical signatures of classical 
environmental toxicants 

Finne et al. 2007 

Endocrine Disruption 
Pathways 

Flow-through Microarray Links reduced fecundity/population decline to 
perturbations in endocrine pathways, 
vitellogenin, steroid concentrations, gonad 
weight, and specific perturbations in gene 
expression 

Miller et al. 2007; 
Ankley et al. 2008; 
Villeneuve et al. 
2007; Hoffmann et 
al. 2008 
 

Pathways of Toxicity Injection Microarray Demonstrates that TCDD perturbs fin 
regeneration by impacting the expression of 
genes involved in extracellular matrix 
composition and cellular differentiation  

Andreasen et al. 
2006 

Pathways of Toxicity Static exposure Microarray Demonstrates heart-specific mechanisms of 
AhR/TCDD-mediated toxicity 

Handley-
Goldstone et al. 
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2005; Carney et al. 
2006 

Pathways of Toxicity/ 
Biomarkers of Effect and 
Temporal Changes 

Flow-through Microarray Used cDNA arrays and Q-PCR to identify 
potential indicators of thyroid axis and 
metamorphosis disruption in frogs 

Helbing et al. 
2007a;  
Helbing et al. 
2007b 

Dose-Response, 
Adaptive/Toxic 
Response 

Static renewal Microarray Links gene expression changes to reduced 
growth.   

Roling et al. 2006 

Temporal and Adaptive 
Changes 

Injection Microarray Demonstrates time-dependent adaptive 
changes prior to toxicity following TCDD 
treatment 

Volz et al. 2006 

Screening of Emerging 
Chemicals; Predicting 
Adverse Outcomes 

Flow-through Microarray Uses microarrays to determine the potential 
mechanisms of PFOA toxicity 
 

Wei et al. 2008 

Emerging Chemicals Static Microarray Uses microarrays to demonstrate differential 
effects of nanoparticles and their constituents 

Griffitt et al. 2007 

Inter-laboratory 
Comparisons 

Flow-through, 
other 

Microarray Meta-analysis of data from environmental 
estrogen exposure that produced new, 
sensitive biomarkers of exposure 

Gunnarsson et al. 
2007 

Adaptive/Toxic 
Response 

Static renewal Microarray Demonstrates metal specific gene expression 
in response to copper, cadmium, and zinc.  
Proposes novel modes of toxicant action.  

Poynton et al. 2007

Computational Flow-through Microarray Assesses sources of variation in fish 
microarray experiments. Chemical class 
prediction using bioinformatic classification 
software such as Support vector machines 

Wang et al. 2008a,  
Wang et al. 2008b 

Chemical Signatures/ 
Adaptive Response 

Flow-through Metabolomics Demonstrates compensatory mechanisms and 
adaptive recovery from an estrogen.  Also 
demonstrates the potential of metabolomics in 

Ekman et al. 2007 
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ecotoxicology. 
Temporal Changes Flow-through Proteomics Provides early response indicators to thyroid 

hormones in frogs 
 

Domanski and 
Helbing 2007 

Chemical signatures 
 
 

laboratory Metabolomics A mechanism of action from combination of 
NMR metabolite profiling and neural network 
classification  

Ott et al 2003 
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B. Diagnostic Studies  
APPLICATION NATURE OF 

EXPOSURE 
APPROACHES SIGNIFICANCE OF RESULTS REFERENCES 

Population Genetics None/unknown 
field 

Microarray Demonstrate variation in gene expression and 
potential difficulties of using particular genes 
as biomarkers 

Oleksiak et al. 
2002; Oleksiak et 
al. 2005 

Sample Monitoring Wastewater 
treatment 

Microarray Effect of Mixtures; endocrine disruptors and 
no-endocrine disruptors 

Filby et al. 2007b; 
Garcia-Reyero et 
al. 2008; Filby et 
al. 2007c 

Sample Monitoring Field qRT-PCR Demonstrates that seal thyroid hormones are 
sensitive to disruption by pollutant stress 

Tabuchi et al. 2006 

Population Genetics Field Microarray Demonstrates differential adaptation to 
distinctly different field sites 
 

Larsen et al. 2007 

Chemical Remediation Field Microarray Demonstrates the utility of microarrays as an 
additional weight-of-evidence approach to 
monitor remediation at a polluted site 

Roling et al. 2007 

Site Monitoring and 
computational 

Field combined 
with laboratory 

Microarray, 
Differential 
display 

Demonstrates differential expression at 
polluted and reference sites, and demonstrates 
distinct differences between males and 
females in the pollutant responses. Prediction 
of environmental source of fish by stress gene 
responses 
 

Williams et al. 
2003; Falciani et al 
2008, Meyer et al. 
2005 

Site Monitoring Field Subtractive 
hybridization, 
Differential 
display 

Demonstrates differential expression at 
polluted and references site.  Links to lab 
work to field sampling 

Maples and Bain 
2004; Roling et al. 
2004 

Computational Field Metabolomics Improved discrimination between sample Parsons et al. 2007 
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classes compared to unscaled, autoscaled or 
Pareto scaled data.  Leads to better site 
classification 

Site monitoring Field Metabolomics Demonstrates differential metabolic 
fingerprints in earthworms (Lumbricus 
rubellus) from sites with differing metal 
contamination. 

Bundy et al. 2007 

Site monitoring Field Metabolomics Demonstrates differential metabolic 
fingerprints in marine mussels (Mytilus 
edulis) at polluted and reference sites.  

Viant, unpublished 
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